Math 261

Fall 2023
Lecture 19

Feb 19-8:47 AM

$$
\begin{aligned}
& \text { find en of tan. line and normal line to } \\
& \text { the graph of } f(x)=\sin x \text { at } x=\frac{\pi}{2} \text {. } \\
& \begin{array}{c}
\text { Normal } \\
\text { line } \rightarrow \text { Vertical } \rightarrow \text { No slope } \rightarrow x=\frac{\pi}{2}
\end{array} \\
& f(x)=\sin x \quad f\left(\frac{\pi}{2}\right)=\sin \frac{\pi}{2}=\sin 90^{\circ}=1 \rightarrow\left(\frac{\pi}{2}, 1\right) \\
& f^{\prime}(x)=\cos x \quad f^{\prime}\left(\frac{\pi}{2}\right)=\cos \frac{\pi}{2}=\cos 90^{\circ}=0 \\
& m_{\text {tan. line }}=0 \rightarrow \text { Horizontal } \\
& \underbrace{m_{\text {Normal line }}}_{\substack{\text { Vertical line } \\
x=a}} \underset{\sim}{x=\frac{\pi}{2}} \quad y-1=O\left(x-\frac{\pi}{2}\right) \rightarrow y=1
\end{aligned}
$$

More notation
$f(x)$ function $y=f(x)$
$f^{\prime}(x) \quad f$-Prime of $x \rightarrow$ First derivative $y^{\prime} \quad y$-Prime \rightarrow
$y^{\prime \prime} \quad y$-double Prime \rightarrow Second derivative

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

$f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$
$\rightarrow m$ of tan. line to graph of $f(x)$ at $(a, f(a))$
find $f^{\prime}(4)$ for $f(x)=\sqrt{x}$.

$$
\begin{aligned}
& =f^{\prime}(4)=\lim _{x \rightarrow 4} \frac{f(x)-f(4)}{x-4} \\
& =\lim _{x \rightarrow 4} \frac{(\sqrt{x}-2)(\sqrt{x}+2)}{(x-4)(\sqrt{x}+2)}=\lim _{x \rightarrow 4} \frac{x^{\prime}-4}{(x-4)(\sqrt{x}+2)} \\
& =\lim _{x \rightarrow 4} \frac{1}{\sqrt{x}+2}=\frac{1}{\sqrt{4}+2}=\frac{1}{4} \\
& y-y_{1}=m\left(x-x_{1}\right) \quad y-2=\frac{1}{4} x-1 \\
& y-2=\frac{1}{4}(x-4) \quad y=\frac{1}{4} x+1
\end{aligned}
$$

find ign of the normal line to the graph of $f(x)=\frac{1}{x-1}$ at $x=2$.

$$
\begin{align*}
& f^{\prime}(2)=\lim _{x \rightarrow 2} \frac{S^{\prime}(x)-f(2)}{x-2}=\lim _{x \rightarrow 2} \frac{\frac{1}{x-1}-1}{x-2} \begin{array}{l}
\text { LCD }=x-1
\end{array} \\
& =\lim _{x \rightarrow 2} \frac{(x-1) \cdot \frac{1}{x-1}-1(x-1)}{(x-1)(x-2)}=\lim _{x \rightarrow 2} \frac{1-x+1}{(x-1)(x-2)} \\
& =\lim _{x \rightarrow 2} \frac{2^{-1}-x}{(x-1)(x-2)}=\lim _{x \rightarrow 2} \frac{-1}{x-1}=\frac{-1}{2-1}=
\end{align*}
$$

$$
\begin{aligned}
& y=f(x) \\
& y^{\prime}=f^{\prime}(x)
\end{aligned}
$$

New notation $\quad y^{\prime}=\frac{d y}{d x}=\frac{d}{d x}[y]=\frac{d}{d x}[f(x)]$
Derivative Rules:

$$
\begin{aligned}
& \frac{d}{d x}[f(x)+g(x)]=\frac{d}{d x}[f(x)]+\frac{d}{d x}[g(x)] \\
& \frac{d}{d x}[f(x)-g(x)]=\frac{d}{d x}[f(x)]-\frac{d}{d x}[g(x)]
\end{aligned}
$$

ex:

$$
\begin{aligned}
\frac{d}{d x}[\sin x-\cos x] & =\frac{d}{d x}[\sin x]-\frac{d}{d x}[\cos x] \\
& =\cos x-(-\sin x) \\
& =\cos x+\sin x
\end{aligned}
$$

find eau of tan. line to the graph

$$
\begin{aligned}
\frac{d}{d x}[f(x) \cdot g(x)] & =\frac{d}{d x}[f(x)] \cdot g(x)+f(x) \cdot \frac{d}{d x}[g(x)] \\
& =f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x) \\
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right] & =\frac{\frac{d}{d x}[f(x)] \cdot g(x)-f(x) \cdot \frac{d}{d x}[g(x)]}{[g(x)]^{2}} \\
& =\frac{f^{\prime}(x) \cdot g(x)-f(x) \cdot g^{\prime}(x)}{[g(x)]^{2}}
\end{aligned}
$$

$$
\text { find } \begin{aligned}
f^{\prime}(x) \text { for } f(x)=\underbrace{\sin x \cos x}_{\text {Product }} \\
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}[\sin x] \cdot \cos x+\sin x \cdot \frac{d}{d x}[\cos x] \\
& =\cos x \cdot \cos x+\sin x-\sin x \\
& =\cos ^{2} x-\sin ^{2} x=\cos 2 x
\end{aligned}
\end{aligned}
$$

find eqn of tan. line to $f(x)=\sin x \cos x$

$$
\text { at } \begin{aligned}
& x=\frac{\pi}{4} \\
& f\left(\frac{\pi}{4}\right)=\sin \frac{\pi}{4} \cdot \cos \frac{\pi}{4} \\
&=\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} \\
&=\frac{1}{2} \\
& y-\frac{1}{2}=0\left(x-\frac{\pi}{4}\right) \\
& y=f^{\prime}\left(\frac{\pi}{4}\right)=\cos 2\left(\frac{\pi}{4}\right) \\
&=\cos \frac{\pi}{2}=0
\end{aligned}
$$

find $f^{\prime}(x)$ for $f(x)=\tan x$

$$
\begin{aligned}
& \sqrt{\frac{d}{d x}[\sin x]=\cos x} \begin{aligned}
& \sqrt{d} \frac{d}{d x}[\cos x]=-\sin x \\
& \frac{d}{d x}[\tan x=\frac{\sin x}{\cos x} \\
&=\frac{\cos x \cdot \cos x-\sin x \cdot-\sin x}{\cos ^{2} x}=\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x} \\
& {[\cos x]^{2} }=\frac{1}{\cos ^{2} x}=\left[\frac{1}{\cos x}\right]^{2} \\
& \sqrt{\frac{\sin x}{d x}[\tan x]=\sec ^{2} x}=\frac{\frac{d}{d x}[\sin x] \cdot \cos x-\sin x \cdot \frac{d}{d x}[\cos x]}{2}=\sec ^{2} x
\end{aligned}
\end{aligned}
$$

find eqn of tan. line to the graph of $y=\tan x$ at $x=\frac{\pi}{3}$.

$$
m_{m=y^{\prime}}\left(\frac{\pi}{3}, \sqrt{3}\right)
$$

$$
\text { at } x=\frac{\pi}{3}
$$

$$
y=\tan \frac{\pi}{3}
$$

$$
\begin{aligned}
& =\tan 60^{\circ} \\
& =\sqrt{3}
\end{aligned}
$$

$$
\begin{aligned}
& y=\tan x \\
& y^{\prime}=\sec ^{2} x \quad m=\operatorname{Sec}^{2} \frac{\pi}{3}=\left[\frac{1}{\cos \frac{\pi}{3}}\right]^{2}=\left[\frac{1}{\frac{1}{2}}\right]^{2}=2^{2}=4 \\
& \quad y-y_{1}=m\left(x-x_{1}\right) \\
& y-\sqrt{3}=4\left(x-\frac{\pi}{3}\right) \Rightarrow y=4 x-\frac{4 \pi}{3}+\sqrt{3}
\end{aligned}
$$

Oct 2-11:23 AM

Evaluate $\lim _{x \rightarrow \pi / 4} \frac{\tan x-1}{x-\pi / 4}$
Hint: $f(x)=\tan x$

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

